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Model-Based Estimation of Lithium Concentrations

and Temperature in Batteries Using

Soft-Constrained Dual Unscented Kalman Filtering
Stefano Marelli, Matteo Corno

Abstract—Safe and effective use of Lithium ion (Li-ion) bat-
teries requires advanced Battery Management Systems (BMS).
BMSs monitor the state of the battery (state-of-charge, state-
of-power, temperature) and limit the current. The better the
estimation of these internal states, the more energy the BMS
is capable of safely extracting from the battery. The paper
proposes an electrochemical model-based estimate of the Li-
ion concentration and temperature of a cell. The use of the
electrochemical approach allows not only for the estimation of
the bulk State of Charge (SoC), but also for the estimation
of the spatial distribution of lithium and temperature. The
paper develops a soft-constrained Dual Unscented Kalman Filter
(DUKF). The dual nature, along with parallelization, reduces the
computational complexity; the soft-constraint improves accuracy
and convergence. A thorough and realistic simulation analysis
validates the approach showing bulk SoC estimation error lower
than 1.5%, solid phase lithium concentration estimation errors of
less than 4% in any point of the cell and temperature estimations
errors within 0.2◦C from the true value in any point of the cell.

Index Terms—Li-ion batteries, electrochemical-thermal model,
Dual Unscented Kalman Filter, soft-constraint

I. INTRODUCTION

L ITHIUM ION (Li-ion) batteries are the most widely

adopted technology for electric mobility and consumer

electronics, thanks to their ability to store and deliver electric

energy more efficiently and effectively than other chemistries.

Unfortunately, Li-ion batteries are chemically unstable; they

thus require Battery Management Systems (BMSs) to be safely

operated [1], [2]. The BMS ensures safe operation by con-

tinuously monitoring: temperature, current, voltage, amount

of remaining energy, and degradation. The BMS controls the

current to avoid that any of the internal states of the battery

exceed their safety limits, thus preventing damages and safety

risks. Many of the internal states that need to be monitored

cannot be directly measured; one of the key functions of the

BMS is therefore to provide an estimate of these states. The

more accurate this estimate is, the closer the battery can be

exploited to its fundamental limits. If uncertainties or errors

are present in the estimation, the BMS needs to adopt a

conservative approach to avoid damaging the battery. For these

reasons, state estimation is one of the key field in Li-ion BMS

design.

A Li-ion cell is mainly composed of a negative and positive

electrode, and a separator [3]. The electrodes have a lattice
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structure in which lithium is stored; they are immersed in

an (usually liquid) electrolyte. The separator allows only

the lithium ions to flow through it, while it is an electrical

insulator. During discharge, lithium diffuses to the surface

of active material particles of the negative electrode and

it undergoes the electron-generating reaction. Then, lithium

ions dissolve in the electrolyte and cross the separator, while

electrons are conducted to the current collector by the solid

lattice. Eventually, both lithium ions and electrons reach the

positive electrode and are reabsorbed in the active material

particles. This process is called dual-intercalation [4] and is

depicted in Figure 1.

Fig. 1. Scheme of the dual-intercalation process in a Li-ion cell.

Several models of the Li-ion batteries exist. They are classi-

fied according to their complexity and accuracy (see for exam-

ple [5]). The simplest models for Li-ion cells are the equivalent

circuit models (ECMs) [6]–[8], or gray-box models. They

describe the cells dynamics with minimum computational

cost by means of elementary electric circuits with voltage

sources, resistors and capacitors; these components may be

given a (possibly non-linear) characteristic. These models are

sufficiently accurate during low-current events; but they fail to

describe the cell dynamics during high current events. First-

principle electrochemical models, that describe the electro-

chemical reactions, overcome these limitations. Different first-

principle modeling approaches exist: from rather simple Single

Particle Models (SPM) [9] to advanced Computational Fluid

Dynamics (CFD) models [10], that describe physical phenom-

ena in all directions of the cell with extreme accuracy, but at

the price of high computational burden and high number of

electrochemical parameters to be identified. All these models

may or may not include descriptions of the thermal dynamics.

As for the dual intercalation dynamic models, thermal models

exist at different levels of computational cost and accuracy

[11]. For example, in [12] the authors develop a lumped

thermal model for a cylindrical Li-ion cell, which lacks the

effects of temperature state on the electrochemical dynamics.
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In [3], [10], space-distributed electrochemical-thermal models

are proposed, in which the influence of electrochemical and

thermal parts is reciprocal.

The availability of an accurate electrochemical-thermal

model and its incorporation in the BMS is critical for safe

and effective use of Li-ion batteries. It is known [5] that for

demanding current conditions, while averaged electrochemical

quantities such as voltage (V ) and State of Charge (SoC)

may reside in their safe region, a few areas in the electrodes

may suffer of local conditions that are detrimental for the

cell life and/or performance. In particular, using reactions

overpotentials and lithium concentrations limitations rather

than voltage limitations leads to improvements in terms of

energy extraction and aging. This approach can only be

implemented by employing a sufficiently accurate estimate,

with insight on the electrochemical reactions taking place

inside the cell. Internal lithium concentration distributions are

a crucial information to effectively avoid reaching locally

critical depletion levels [13]. In addition, it is shown in

[14] that the electrochemical model dynamics are heavily

affected by temperature. However, similarly to what happens

for concentrations, large differences between surface and core

temperatures can be generated during normal cell operation

[12]. If one only monitors the surface temperature, which

is the only thermal state that is measurable without altering

the structural integrity of a cylindrical cell (i.e., for example,

without drilling a hole to measure the core temperature), a

thermal runaway may not be promptly detected, thus leading

to premature cell degradation or even to explosions [15].

As such, whilst a bulk thermal model may be enough to

improve the electrochemical model accuracy, a knowledge of

the temperature distribution is needed to prevent harmful and

safety-critical conditions.

The Pseudo 2-Dimensional (P2D) electrochemical model,

adopted in works such as [4], [16]–[20], is widely recog-

nized as a valuable trade-off between detailed modeling and

computational cost. However, this model, relying on Partial

Differential Algebraic Equations (PDAEs), requires particular

care in the implementation and in the observer formulation.

Several methods are available in literature to find approximated

and/or reduced-order solutions [21]–[23]. For instance, the

diffusion dynamics in the spherical particles radial direction

may be simplified: [24] assumes parabolic or polynomial

concentrations distribution in active material particles. Integral

expressions in short times and long times for the response

of reaction molar flux were, instead, introduced by [16].

Moreover, [18] proposed an impedance model for solid phase

diffusion, and applied Finite Elements Method (FEM) on

electrolyte phase. In the present work, the P2D model is

coupled with a distributed thermal model of a cylindrical

Li-ion cell, as described in [25], and a Finite Difference

Method (FDM) space-discretization technique is employed for

the PDAEs, because it allows for easy order rescaling, while

maintaining the physical meaning of all the variables and

parameters.

The accuracy and the complexity of state estimation tech-

niques is strictly related to that of the models they employ.

A non-linear fractional order model, based on an ECM, is

employed by [26], and it is used for battery SoC estimation.

One of the most outstanding approach employs the electro-

chemical SPM [27], but it neglects temperature dynamics.

In [28] the authors adopt an approximated version of the

SPM, and propose a way to compensate for model uncertainty

and electrolyte dynamics simplification. Elsewhere, the P2D

model is employed by proposing different approaches for order

reduction: [13] estimates the instantaneous available current;

[29] estimates the bulk SoC using an Extended Kalman Filter

(EKF) on a space-discretized and reduced-order version of

the P2D model; [19] estimates also the lithium concentrations

using orthogonal collocation and a Kalman filter. The latter

work includes a bulk thermal model of the cell. Better results

may be obtained with a distributed thermal model, and with

more advanced filtering techniques, given the highly non-linear

nature of the cell electrochemical dynamics. The use of the

Unscented Kalman Filter (UKF) [30] is investigated in [31]

for SoC estimation in a simple ECM, while [32] applies it

to a volume-averaged electrochemical model. These results

prove that the UKF is an interesting tool to account for the

cell non-linear electrochemical dynamics. In a previous work

by the same authors of this manuscript [33], the application

of the UKF is extended to the complete (i.e. not simplified)

electrochemical P2D model. This work extends those results

by proposing a Dual Unscented Kalman Filter (DUKF) al-

gorithm, that encompasses both the P2D and a distributed

thermal model. The dual observer structure is often expoited

in the literature for state and parameter estimation, and in

some works UKF is chosen as the estimator for such purposes

[34]. Here, the proposed dual structure is instead dedicated to

electrochemical and thermal states estimation; in particular, the

DUKF consists in an UKF dedicated to lithium concentrations

estimation, and an UKF dedicated to temperatures estimation.

The former receives the estimated cell bulk temperature from

the latter, while the latter receives the estimated concentrations

from the former, thus accomplishing the coupling of the two

parts of the DUKF. The proposed DUKF estimator has four

main advantages:

1) It does not require a closed-form solution of the dy-

namics, thus avoiding the need to solve the algebraic

constraints analytically or to numerically compute the

Jacobian. An EKF implementation would require either

operation.

2) It can easily accommodate to the inclusion of soft-

constraints that improve the estimation convergence, as

illustrated in the following.

3) It is prone to parallel implementation, as pointed out in

[35].

4) While retaining the desired level of accuracy, it makes

use of the minimal set of information, as discussed

below.

Furthermore, here it is proven that the proposed DUKF ap-

proach is robust with respect to noisy voltage and surface

temperature measurements; this consideration is not always

reported in literature for other approaches (see, for example,

[29] or [32]).

The main contributions of the present manuscript are sum-
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marized as follows:

1) A DUKF is applied for the first time to lithium con-

centrations and local temperature estimation using the

complete P2D model coupled to a distributed thermal

model.

2) Estimation convergence issues with the complete P2D

model are first investigated in simulation, then overcome

by means of a soft-constrained formulation of the DUKF

observer.

3) The DUKF observer is successfully implemented with

a parallel computation approach, sensibly reducing its

computational burden.

This paper is structured as follows. In Section II, the coupled

electrochemical-thermal model is recalled, by summarizing the

main characteristics of the P2D model and of the thermal

model, highlighting the coupling terms, and applying the

space-discretization to each part. In Section III, the concept

of DUKF is first stated; then, the main problems arising

from the UKF application to the P2D model are described,

and subsequently overcome by implementing the concept of

soft-constrained DUKF; also, the results of DUKF parallel

implementation are presented. In Section IV, some DUKF

tuning considerations are reported. The novel approach is fully

validated in Section V, with also a remark on the validity of

the proposed dual structure. In Section VI, conclusions are

finally drawn.

II. COUPLED ELECTROCHEMICAL-THERMAL MODEL

This section described the model used in designing the

observer. The overall model is composed of two parts, namely

the P2D electrochemical model and the thermal model, which

are described separately here, for the sake of clarity. The

P2D model describes the dynamics of the concentrations of

lithium in the cell, and of all the quantities that depend

algebraically on concentrations; the thermal model describes

the temperature dynamics, driven by local heat generation

mechanisms. These two parts exhibit bidirectional interactions,

in that the electrochemical reactions are influenced by the

temperature at which they take place, and the heat generation

mechanisms depend on the values of electrochemical states.

The interactions among the two parts are eventually described

in this section as well, whereas a comment on how these

interactions are dealt with in the proposed observer is provided

in Section III.

A. Pseudo-2-Dimensional electrochemical model

The P2D model describes the dual-intercalation process by

a set of PDAEs. The only considered diffusion dynamics are

those taking place across the battery film thickness, indicated

as longitudinal direction x, and inside the spherical particles,

along the radial direction r. The conservation equations are

summarized in Table I. In these equations, cs is the lithium

concentration in solid phase; ce is the Li-ion concentration in

electrolyte phase; is is the electronic current in solid phase; ie
is the ionic current in electrolyte phase; φs is the solid phase

potential; φe is the electrolyte phase potential. I is the cell

current, which is the input of this model (assumed positive in

TABLE I
ELECTROCHEMICAL MODEL - CONSERVATION PDAES (BOUNDARY

CONDITIONS ARE MARKED WITH GRAY BACKGROUND).

Species: solid phase

∂cs

∂t
=

Ds

r2

∂

∂r

(

r2
∂cs

∂r

)

∂cs

∂r

∣

∣

∣

∣

r=0

= 0

Ds
∂cs

∂r

∣

∣

∣

∣

r=Rs

=
−jLi

asF

Species: electrolyte phase

∂εece

∂t
=

∂

∂x

(

Deff
e

∂ce

∂x

)

+
1− t0+

F
jLi

∂ce

∂x

∣

∣

∣

∣

x=0

= 0

∂ce

∂x

∣

∣

∣

∣

x=L

= 0

Charge: solid phase

is = −σeff ∂φs

∂x

∂φs

∂x

∣

∣

∣

∣

x=δn

=
∂φs

∂x

∣

∣

∣

∣

x=δn+δs

= 0

−σeff ∂φs

∂x

∣

∣

∣

∣

x=0

= −σeff ∂φs

∂x

∣

∣

∣

∣

x=L

=
I

A

Charge: Electrolyte Phase

ie = −keff
∂φe

∂x
− k

eff
D

∂ln (ce)

∂x

∂φe

∂x

∣

∣

∣

∣

x=0

= 0

∂φe

∂x

∣

∣

∣

∣

x=L

= 0

discharge). Also, Ds is the solid phase diffusion coefficient;

F is Faraday’s constant; as is the electrode specific interfacial

area; Deff
e is the effective diffusion coefficient; t0+ is Li-

ion transference number (assumed as a constant); σeff is the

effective conductivity; keff is the effective ionic conductivity,

while k
eff
D is the effective diffusion conductivity. Finally,

a few geometrical quantities are defined as well: A is the

electrode plate area; δn,p,s, are, respectively, the negative and

positive electrodes and separator thicknesses; L = δn+δp+δs
is the overall film thickness; Rs is the radius of the active

material spherical particles.

The Butler-Volmer kinetics equation describes the molar flux

jLi at the active material particles surface:

jLi = asj0

[

exp

(

αaF

RT
η

)

− exp

(

−
αcF

RT
η

)]

(1)

where αa,c are, respectively, the anodic and cathodic transfer

coefficients; R is the universal gas constant; T is the temper-

ature at which the reaction takes place; j0 is the exchange

current density. The reaction overpotential η is defined as:

η = φs − φe − U(cse) (2)

where U is the thermodynamic equilibrium potential and is a

non-linear function of the surface concentration cse [17]. The
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gradients of is and ie along x are related to jLi as follows:

∂ is

∂x
= −jLi,

∂ ie

∂x
= jLi. (3)

Equations (3) are subject to the following constraints inside

the separator x ∈ [δn, δn + δs]:

∂is

∂x
(x) =

∂ie

∂x
(x) = 0

is(x) = 0

ie(x) =
I

A
.

Finally, the terminal cell voltage is given by:

V = φs(x = L)− φs(x = 0)−
Rf

A
I (4)

where Rf is the electrode surface film resistance. In the

following, the cell parameters proposed and experimentally

identified in [17] are adopted.

The coupling with the thermal part of the model takes place

through the term T appearing explicitly in (1). Also, a few

parameters of the P2D model are considered temperature-

dependent; more specifically, these are: the exchange current

density i0, the diffusion coefficient in the solid phase Ds,

the diffusion coefficient in the electrolyte phase De and the

electrolyte ionic conductivity k. All these parameters depend

on the temperature according to the Arrhenius equation:

Ψ(T ) = Ψref

[

EΨ
act

R

(

1

Tref

−
1

T

)]

where Ψ is the generic parameter among those considered,

Ψref is the value of the parameter at the reference temperature

Tref = 25◦C, EΨ
act is the activation energy for the parameter

Ψ.

Given the above model, the stoichiometry θs is defined as

the ratio between the local value of concentration cs and its

maximum value cs,max [17]; and θse is the stoichiometry eval-

uated at an active material particle surface. SoC is defined as

the average stoichiometry in negative electrode [4], normalized

between two experimentally determined limits [29]:

SoC =

(

3

δnR3
s

∫ δn

0

∫ Rs

0

r2θs drdx

)

− θs,0%

θs,100% − θs,0%
(5)

where θs,0% is the limit stoichiometry at SoC = 0%, and

θs,100% is the limit stoichiometry at SoC = 100%. SoC is

synthetically representative for the amount of charge available

inside the cell.

The FDM approach is used to space-dicretize the P2D

model, as depicted in Figure 2. The cell is discretized along x

in Nn,p,s elements, respectively for the negative and positive

electrodes, and the separator; each element occupies a space

∆xn,p,s, respectively. Inside each electrode there is a number

of active material spherical particles equal to the ratio between

the effective electrode volume and the volume of a single

sphere:

νn,p =
δn,p A εs;n,p

4
3πR

3
s

negative electrode separator positive electrode

c
s,m

�
s,m i

e,m
i
e,m-1

c
e,m

�
e,m

c
e,m

�
e,mi

e,m
i
e,m-1

i
e,m

m�xm j Li
�xm jLi

�
s,m

�
s,mi

s,m
i
s,m-1 i

s,m
i
s,m-1

i
s,0

i
s,Nn+Ns+Np

c
s,(m,1)

c
s,(m,p)

c
s,(m,Nr)

�r c
s,(m,1)

s,(m,p)
c

�r

...

... ... ... ... ...

c
s,(m,Nr)

i
e,m-1

m

Fig. 2. Discretization of Li-ion cell along the x and r directions.

where εs;n,p is the solid phase volume fraction of negative and

positive electrodes, respectively. As such, in each discretized

element of the electrodes there is a number of spherical

particles respectively equal to:

ν∆x
n,p =

νn,p

Nn,p

.

Each active material spherical particle is further discretized

along its radius r in Nr elements, spaced ∆r. Since all

equations are written with volume-specific quantities, there is

no need to consider all the ν∆x
n,p spheres for each discretized

element, but just one sphere is representative also for the dy-

namics of all the others within the same element. Overall, the

electrochemical model is described by (Nr+1)(Nn+Np)+Ns

Ordinary Differential Equations (ODEs), plus 5(Nn +Np) +
2Ns − 3 non-linear algebraic constraints.

The conservation equations for the resulting discretized

model are summarized in Table II, in the form of Differential

Algebraic Equations (DAEs). In the table and in the following,

index m is used for discretized elements along x and index p

for discretized elements along r. The Butler-Volmer kinetics

equation (1) becomes:

jLi
m = asj0

[

exp

(

αaF

RT
ηm

)

− exp

(

−
αcF

RT
ηm

)]

and overpotential (2) is written as:

ηm = φs,m − φe,m − U(cs,(m,Nr)).

Furthermore, the relations involving molar flux (3) become,

respectively:

is,m − is,m−1 = −∆xmjLi
m , ie,m − ie,m−1 = ∆xmjLi

m .

The cell output equation (4) is written as:

V = φs,Nn+Ns+Np
− φs,1 −

Rf

A
I.

Finally, SoC (5) is computed as:

SoC =
1

NnR3
s

Nn
∑

m=1

Nr
∑

p=1

cs,(m,p)

(

r3p − r3p−1

)
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TABLE II
DISCRETIZED ELECTROCHEMICAL MODEL - CONSERVATION DAES

(BOUNDARY CONDITIONS ARE MARKED WITH GRAY BACKGROUND).

Species: solid phase

ċs,(m,p) =
Ds

(p∆r)2

[

2p∆r

(

cs,(m,p+1) − cs,(m,p)

∆r

)

+ (p∆r)2
(

cs,(m,p−1) − 2cs,(m,p) + cs,(m,p+1)

∆r2

)]

cs,(m,1) − cs,(m,0) = 0

Ds

(

cs,(m,Nr+1) − cs,(m,Nr)

∆r

)

=
−jLi

m

asF

Species: electrolyte phase

ċe,m =
D

eff
e

εe

(

ce,m−1 − 2ce,m + ce,m+1

∆x2
m

)

+
1− t0+

Fεe
jLi
m

ce,1 − ce,0 = 0

ce,Nn+Ns+Np+1 − ce,Nn+Ns+Np
= 0

Charge: solid phase

is,m = −σeff

(

φs,m+1 − φs,m

∆xm

)

is,Nn
= is,Nn+Ns

= 0

is,0 = is,Nn+Ns+Np
=

I

A

Charge: Electrolyte Phase

ie,m =− keff
(

φe,m+1 − φe,m

∆xm

)

− k
eff
D

(

ln(ce,m+1)− ln(ce,m)

∆xm

)

φe,1 − φe,0 = 0

φe,Nn+Ns+Np+1 − φe,Nn+Ns+Np
= 0

where rp is the radius of the p-th discretized element, equal

to p∆r.

As an example of the electrochemical model capabilities,

in Figure 3 the surface stoichiometry is reported along x

at different time snapshots for a dynamic current input that

will be described later (second scenario of Section V), while

in Figure 4 the stoichiometry is reported along r inside a

spherical particle located at x = L. The P2D model is

100
50

time [s]
0

0.4

0.2

0.6

se
 [-

]

0.4

0.8

x/L [-]
0.6 0.8 10

Fig. 3. Solid phase stoichiometry gradients during first 100s of the second
scenario described in Section V: surface stoichiometry gradients along x
direction. Dotted lines indicate the separation among domains: negative
electrode (left), separator (center) and positive electrode (right).

discretized with Nr = 50 and Nn = Ns = Np = 5.

It is clear how inner concentration gradients arise during

normal cell cycling (both along x and r directions); as such,

1000.3

0.4

0.5

time [s]

0

s(x
 =

 L
) 

[-
]

50

0.6

0.7

0.2

r/Rs [-]

0.4 0.6 0.8 01

Fig. 4. Solid phase stoichiometry gradients during first 100s of the second
scenario described in Section V: stoichiometry gradients along r direction.

the importance of an estimator capable of capturing these

gradients is evident.

B. Thermal model

The thermal model describes heat generation mechanisms

by means of PDEs. It assumes that the temperature gradient

along the cylinder axial direction y is negligible (see [36],

[37]); thus, the temperature dynamics are those of heat con-

duction along the radius of a cylinder:

ρcp
∂T

∂t
= kt

∂2T

∂2rc
+

kt

rc
∂T

∂rc
+Q (6)

subject to boundary conditions:

∂T

∂rc

∣

∣

∣

∣

rc=0

= 0,
∂T

∂rc

∣

∣

∣

∣

rc=Rc

= −
h

kt
(T − T∞) (7)

where T∞ is the environment temperature (considered constant

here), kt is the thermal conductivity, ρ is the density, h is

the convection heat transfer coefficient, cp is the specific heat

capacity, Q is the volumetric heat generation rate, rc is the

radial direction and Rc is the radius of the cylinder. Since

the cylinder is a heterogeneous domain, being composed of

two different phases (solid and electrolyte) distributed in three

domains (negative electrode, positive electrode and separator),

the heat capacity Cp is computed as in [38]:

Cp = ρcp =
∑

i,k

δiεk,iρk,icp,k,i

L

where subscript k = (s, e) indicates the phase (solid or elec-

trolyte) and subscript i = (n, s, p) indicates the component.

Q is the sum of three terms: the volumetric reaction heat

Qj , the volumetric ohmic heat Qo and the volumetric contact

resistance heat Qf :

Q = Qj +Qo +Qf (8)

where:

Qj =
1

L

∫ L

0

jLiη dx

Qo =
1

L

∫ L

0

σeff

(

∂φs

∂x

)2

+ keff
(

∂φe

∂x

)2

+ k
eff
D

(

∂ln(ce)

∂x

)(

∂φe

∂x

)

dx

Qf =
Rf

L

(

I

A

)2

.

(9)
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The input to this part of the model is again the cell current I .

The measured output is the cell surface temperature Tsurf ,

because no other temperature measurement is available, as

observed above. The experimentally identified cell parameters

proposed in [14], [39] are adopted in the following.

The coupling with the electrochemical part of the model

takes place through volumetric heats Qj and Qo, that depend

on several electrochemical algebraic variables, and thus on the

electrochemical states.

Also in this case, the model PDEs are discretized using the

FDM, as depicted in Figure 5. The cell is discretized along

r
c

y

x

+

r

to positive collector

to negative

N

S

P

−

collector

Fig. 5. Discretization of Li-ion cell along the rc direction.

rc in Nc elements, using a constant-volume approach. This

means that all the Nc subcells have the same volume, and the

resulting radial increment is not uniform.

The temperature dynamics (6) become:

ρcpṪz = kt

[

Tz−1 − 2Tz + Tz+1

(∆rcz)
2

]

+
kt

rcz

[

Tz+1 − Tz

∆rcz

]

+Qz

(10)

which is a set of Nc ODEs. Boundary conditions (7) are

formulated as:

T1 − T0 = 0,
TNc+1 − TNc

∆rcNc

= −
h

kt
(TNc

− T∞).

In the equations above, index z is used for discretized elements

along rc. The radial increment ∆rcz is the space occupied by

the z-th subcell; it is defined as:

∆rcz = rcz − rcz−1.

Given that the entire volume of the cell is divided

into Nc subcells, each characterized by its own tempera-

ture, the electrochemical model described in Subsection II-A

should be specific for each subcell. This gives a total of

Nc [(Nr + 1)(Nn +Np) +Ns]+Nc states for the discretized

coupled electrochemical-thermal model. Also, since the cur-

rent collector is a common element of all subcells, they are

all connected in parallel; this means that they exhibit the

same terminal voltage. Thus, an additional set of algebraic

constraints arises, of the form:

Vz − Vz−1 = 0, with z ∈ [2, Nc]. (11)

In total, there are Nc [5(Nn +Np) + 2Ns − 3] + Nc − 1
algebraic constraints. By dicretizing (8) and (9), the volumetric

heat generation rate and the individual heat terms become,

respectively:

Qz = Qj,z +Qo,z +Qf,z

and

Qj,z =
1

L

∑

m

jLi
m,zηm,z∆xm

Qo,z =
1

L

∑

m

[

σeff

(

φs,m+1,z − φs,m,z

∆xm

)2

+ keff
(

φe,m+1,z − φe,m,z

∆xm

)2

+ k
eff
D

(

ln(ce,m+1,z)− ln(ce,m,z)

∆xm

)

·

(

φe,m+1,z − φe,m,z

∆xm

)]

∆xm

Qf,z =
Rf

L

(

Iz

Az

)2

.

The term Iz is the input current to the z-th subcell (a fraction

of the total input current I), while Az is the subcell electrode

plate area. Finally, Tbulk is computed as:

Tbulk =
1

V ol

Nc
∑

z=1

V olzTz (12)

where V ol is the total cell volume and V olz is the z-th subcell

volume.

An example of the thermal model capabilities is shown in

Figure 6. The temperature is reported along rc at different

time snapshots for the same current input as Figures 3 and

4. The thermal model is discretized with Nc = 6. The figure

10

20

0.2

T
 [°

C
]

30

0.4

rc/Rc [-]

2000.6 150

time [s]

0.8 100501 0

Fig. 6. Temperature gradients along rc direction during first 225s of the
second scenario described in Section V.

shows that a 10 degrees gradient builds up over 200 s. This test

stresses the importance of an estimator capable of capturing

temperature gradients during normal cell cycling, as is even

better motivated in Subsection V-A.

III. SOFT-CONSTRAINED DUAL UNSCENTED KALMAN

FILTER ESTIMATOR

In this section, the structure of a standard UKF is first

recalled, and then extended to the DUKF estimator. The

advantages of the proposed dual structure are discussed.

State estimation convergence issues in electrochemical UKF
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formulation are studied in simulation and solved by means

of a soft-constraint in Subsection III-A. Finally, a substantial

improvement in computational time is obtained with a parallel

implementation of the DUKF in Subsection III-B.

The UKF is a Sigma-Point Kalman Filter (SPKF) with a

particular choice of weighting coefficients. In [30], details on

UKF formulation and implementation are described, together

with considerations on theoretical aspects. In summary, the

UKF is a model-based estimator for non-linear dynamic sys-

tems, which presents several advantages compared to other

Kalman-based estimators, including EKF:

1) the numeric/analytic computation of Jacobians is not

required;

2) the computational cost is similar to that of EKF; and

3) in turn, accuracy of statistical moments estimation is of

the third order for Gaussian systems [40].

The UKF algorithm is reported in Algorithm 1, for the

case with additive process and measurement noises, indicated

respectively with ξ and υ. A set of sigma-points is determin-

istically sampled starting from the previous-step a-posteriori

state estimate and covariance matrix. In the time-update step,

each of these points is propagated through the system non-

linear state equation; the results are then properly weighted to

generate the current step a-priori state estimate and covariance

matrix. Also, a-priori sigma-points are passed through the

system non-linear output equation, and then properly weighted

to give an estimate of the output and of its covariance matrix.

Furthermore, the state and output cross-covariance matrix

is estimated. Finally, in the measurement-update step, the

Kalman gain is applied to the difference between the actual

and estimated output, in order to compute the current-step

a-posteriori state estimate and covariance matrix. It can be

observed that the time-update step of the algorithm, and in

particular (13) and (14), is naturally amenable to parallel

computing implementation; in fact, each a-priori sigma-point

computation, starting from x̂+
k−1 and P+

xx,k−1, is completely

independent from other sigma-points.

If nx is the dimension of the state vector, the sigma-

points are in the number of 2nx + 1. The covariance matrix

P+
xx,0 of the initial state estimate is a tuning parameter, which

rules the initial dispersion of the sigma-points around the

initial state estimate x̂+
0 , that is another tuning parameter.

The covariance matrix Qξξ of the process disturbance and

the covariance matrix Rυυ of the measurement noise are also

important tuning parameters, as well as the other, minor tuning

parameters, such as α, β and κ.

In the present work, the structure of UKF is exploited

twice, so as to obtain the Dual Unscented Kalman Filter

depicted in Figure 7. In this approach, the overall observer

is composed of two parts: the electrochemical UKF and the

thermal UKF. The electrochemical UKF includes only the

P2D model of the cell. It receives as inputs the current and

the estimated bulk temperature, T̂bulk, which comes from the

thermal part of the observer; it receives the terminal voltage

as the measured quantity (in the standard approach - see

Subsection III-A for a deeper analysis on this); finally, it

provides estimates of all discretized elements of cs and ce,

gathered in the estimated state vector ĉ, and of the state of

Algorithm 1 Unscented Kalman Filter for a system affected

by additive process and measurement disturbances.

0: Non-linear state-space model:

xk = f(xk−1, uk−1, k − 1) + ξk−1

yk = h(xk, uk, k) + υk

Definitions:

nsp = 2nx + 1

λ = α
2(nx + κ) − nx

ws,1 =
λ

nx + λ

wc,1 =
λ

nx + λ
+ 1 − α

2
+ β

ws,2:nsp = wc,2:nsp =
1

2(nx + λ)

1: Initialization:

x̂
+

0 = E[x0]

P
+

xx,0 = E[(x0 − x̂
+

0 )(x0 − x̂
+

0 )T ]

2: Cycle for k = 1, 2, ...
Time-update:

X
+

k−1
=









x̂
+

k−1

x̂
+

k−1
+

√

(nx + λ)P+

xx,k−1

x̂
+

k−1
−

√

(nx + λ)P+

xx,k−1









(13)

X
−

k,i = f
(

X
+

k−1,i, uk−1, k − 1
)

(14)

x̂
−

k =

nsp
∑

i=1

ws,iX
−

k,i (15)

P
−

xx,k =

nsp
∑

i=1

wc,i

(

X
−

k,i − x̂
−

k

)(

X
−

k,i − x̂
−

k

)T
+ Qξξ

Yk,i = h
(

X
−

k,i, uk, k
)

ŷk =

nsp
∑

i=1

ws,iYk,i

Pyy,k =

nsp
∑

i=1

wc,i (Yk,i − ŷk) (Yk,i − ŷk)
T + Rυυ

Pxy,k =

nsp
∑

i=1

wc,i

(

X
−

k,i − x̂
−

k

)

(Yk,i − ŷk)
T

Kk = Pxy,kP
−1

yy,k

Measurement-update:

x̂
+

k = x̂
−

k + Kk (yk − ŷk) (16)

P
+

xx,k = P
−

xx,k − KkPyy,kK
T
k

charge. The dimension of the state for the electrochemical

part of DUKF is nx = (Nr+1)(Nn+Np)+Ns. On the other

hand, the thermal UKF includes only the thermal model of the

cell, and assumes all the Nc subcells to be characterized by

the same electrochemical states cs and ce (distributed along

x and r). It receives as inputs the current and the estimated

concentrations vector, which comes from the electrochemical

part of the observer; it receives the surface temperature as

the measured quantity; finally, it provides estimates of the

temperatures of all the subcells, gathered in the estimated state

vector T̂ . The dimension of the state for the thermal part of

DUKF is nx = Nc. The validity of the proposed structure is

discussed in Subsection V-A.

From the computational efficiency standpoint, the proposed

structure offers two main advantages:
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Elettrochemical UKF

Nn = Ns = Np = 3; Nr = 5

Nc = 1

ĉ−k = fc

(

ĉ+k−1
; T̂+

bulk;k−1
; Ik−1

)

Computation

of Tbulk

Thermal UKF

Nn = Ns = Np = 3; Nr = 5

Nc = 6

T̂−

k = fT

(

T̂+

k−1
; ĉ+k−1

; Ik−1

)

^SoCk

V̂k

ĉ+k

I

I

V

Tsurf

T̂+

k

nt

n̂t;k

T̂+

bulk;k−1

1-step delay

1-step delay

Fig. 7. Scheme of the Dual Unscented Kalman Filter estimator. The meaning
of the signal nt is explained in Subsection III-A.

1) It automatically solves the problem of the parallel con-

figuration for the subcells. Instead of implementing the

algebraic constraints (11), as is done in the coupled

electrochemical-thermal simulator, the measured quan-

tity V is forced to be the same for all the subcells

through the assumption that all the subcells have the

same electrochemical state c.

2) Compared to a full-order UKF with both electrochemical

and thermal models in a monolithic observer, which

would not be a practical solution due to excessive

computational time, it is much more computationally

manageable. In fact, while still retaining the capability

of estimating both concentrations and temperature gra-

dients, and showing high accuracy, it makes use of the

minimal set of information. From extensive simulation

studies, as those reported in Section V, it is observed

that a bulk estimate of temperature is enough for the

electrochemical part of the observer to accurately es-

timate lithium concentrations in any point of the cell.

Similarly, assuming concentrations are equal among all

discretized subcells is enough for the thermal part of the

observer to correctly estimate the values of temperature

along the cylinder radial direction.

A. Convergence issues with the electrochemical UKF imple-

mentation

It is well known that the lithium concentration is difficultly

estimated from terminal voltage and current measurements.

[41] and [27] discuss the lack of observability for the standard

formulation of the SPM. [42] reaches the same conclusion by

looking at the Jacobian of the Lie derivative of a reduced-

order SPM with addition of electrolyte phase concentrations

dynamics. The analytical analysis of the observability of the

P2D model is made complex by its strong non-linearities and

coupled terms. However, a simple simulation study confirms

the same problem. In this test, the current pulses cycle pre-

sented in Figure 8 is applied to the cell. The standard UKF

0 200 400 600 800 1000

time [s]

-200

0

200

I [
A

]

Fig. 8. Convergence issues with the standard application of UKF to SoC
estimation: input current profile.

is applied to the discretized P2D model, with Nr = 5 and

Nn = Ns = Np = 3, and with 5% initial SoC error for the

estimator (note that this value is deliberately chosen as small).

This analysis focuses only on the electrochemical part of the

observer, because this is the only one involved in convergence

issues. Figure 9 clearly shows that, while the terminal voltage

estimation error converges to zero, the bulk SoC estimation

error does not tend to 0.
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time [s]

3

3.5

4

4.5
V

 [V
]

simulated
estimated
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time [s]
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20
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S
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Fig. 9. Convergence issues with the standard application of UKF to SoC
estimation (top: simulated and estimated terminal voltage; bottom: simulated
and estimated SoC).

Figure 10 provide an interpretation of the issue; it plots the

actual and estimated (by using the estimated concentrations)

total number of moles of lithium available in the cell nt. This

0 200 400 600 800 1000

time [s]

0.3

0.4

0.5

n
t [m

ol
]

simulated
estimated

Fig. 10. Convergence issues with the standard application of UKF to SoC
estimation: conservation of total lithium moles in solid phase, under the
current profile of Figure 8.

is defined as the sum of the total number of moles of lithium
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in solid phase ns (which is the integral of cs in the whole

cell volume, i.e. both along r and along x, weighted by the

solid phase volume fraction εs) and the total number of moles

of lithium in electrolyte phase ne (which is the integral of ce
along x, weighted by the electrolyte phase volume fraction

εe):

ns =
3A

R3
s

∫ L

0

∫ Rs

0

εsr
2cs drdx

ne = A

∫ L

0

εece dx (17)

nt = ns + ne.

Note that nt is constant for a given cell, and it is directly

computable from known model parameters. The results prove

that the unscented estimation mechanism does not guarantee

the conservation of the total number of moles of available

lithium, or, equivalently, the conservation of total lithium mass.

As a matter of fact, although the single sigma-point transfor-

mation through the model state equation (14) conserves the

total lithium mass, being based on the P2D model formulation,

a few other steps in the UKF algorithm do not provide the

same feature. More in detail, the steps possibly altering the

total lithium mass because of their purely statistical nature

are: 1) sigma-points computation based on previous step a-

posteriori state estimation and covariance matrix (13); 2) a-

priori state estimation via weighted sum of sigma-points (15);

3) a-posteriori state estimation via measurement correction

step (16). Thus, there are 3 specific mechanisms in the UKF

algorithm that are unable to guarantee mass conservation. This

causes the divergence of the estimate.

The structure of the electrochemical UKF is modified to

account for the conservation of lithium, and improve con-

vergence. One could adopt two approaches: a hard-constraint

approach, adding additional algebraic constraints in the sigma-

points computation; or a soft-constraint approach. The latter

idea consists in modifying the input-output structure of the

model by adding a virtual measurement, namely the total

number of moles of available lithium nt (constant signal).

Thus, in Algorithm 1 it holds:

y =

[

V

nt

]

where nt can be computed with (17) starting from the knowl-

edge of the cell physical parameters only. In fact, one can

fix SoC at an arbitrary value, and compute the corresponding

values of cs and ce at steady-state in the whole cell (i.e. in any

point along x and r), by inverting (5). In the electrochemical

UKF tuning, the additive measurement noise variance corre-

sponding to nt is set to a value that is much smaller than

that corresponding to V . Consequently, a soft-constraint is

enforced in the estimator for the conservation of nt, and the

electrochemical model observability is effectively enhanced.

B. Implementation with parallel computing

Each sigma-point propagation through the non-linear state

equation takes place independently from other sigma-points;

this structure is thus suitable for parallel computing implemen-

tation. Most of the time-update step computational cost (i.e.

the one due to the propagation of the sigma points) can be

distributed on multiple cores and optimized, so that the time

required for this step is ultimately significantly reduced.

The following computational cost analysis quantitatively

illustrates this advantage. The dual estimator is run on the

first 100s of the experiment shown in Figure 11. It consists
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Fig. 11. Current input profile used to analyze computational cost: pulses
sequence at 0-10C.

of a sequence of pulses at 10C followed by rest periods,

both of 10s duration. Simulations were run in MathWorks

MATLAB, with Parallel Computing Toolbox, on a quad-core

machine (2.4GHz) with 12GB RAM and solid-state drive. The

ratio between the simulation time required by the sequential

and parallel implementation, respectively called T
seq
sim and

T
par
sim, is shown in Figure 12, as a function of Nr, with

Nn = Ns = Np = 3 and Nc = 6. By observing the
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Nr [-]

1
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m
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Fig. 12. Ratio between simulation time required by sequential and parallel
computing implementation of UKF estimator, for different discretization levels
Nr .

figure, it is clear that the estimation algorithm computational

burden is reduced by a factor between 1.3 to 2.5 thanks to the

parallel implementation. Note that, on a quad-core machine,

a reduction by exactly a factor 4 is not practically possible,

because of two reasons:

• the observer dual algorithm is not fully parallelizable,

because the electrochemical and thermal parts act on

distinct sets of sigma points;

• some computing overhead is introduced by the Parallel

Computing Toolbox in order to manage the exchange of

information among multiple solvers.

IV. FILTER TUNING ANALYSIS

This section summarizes the results of the DUKF tuning

procedure. The current input profile selected for this purpose is

that of Figure 11. The simulation stops when the output voltage

reaches the lower cutoff value of 2.7V; SoC is roughly 18% at

the end of simulation, because it is not a quasi-static test. The
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simulator is starting from SoC = 100% and T = 10◦C, while

the estimator is initialized at SoC = 80% and T = 20◦C.

Ambient temperature is kept at Tamb = 10◦C to simulate an

active cooling system acting on the cell. The observer is based

on the following discretization: Nr = 5, Nn = Ns = Np = 3
and Nc = 6. Covariance matrices are all chosen as diagonal

matrices, and designed as follows (subscript c stands for the

electrochemical UKF, and T stands for the thermal UKF):

• the covariance matrix P+
xx,c,0 of the initial state estimate

has elements on the main diagonal equal to pcs for lines

in the state vector corresponding to cs and pce for lines

corresponding to ce; the covariance matrix P+
xx,T,0 has

elements on the main diagonal equal to pT for lines

corresponding to T ;

• the covariance matrix Qξξ,c of the process disturbance

(assumed as an additive Gaussian white noise) has el-

ements on the main diagonal equal to qcs for lines in

the state vector corresponding to cs and qce for lines

corresponding to ce; the covariance matrix Qξξ,T has

elements on the main diagonal equal to qT for lines in

the state vector corresponding to T ;

• the covariance matrix Rυυ,c of the measurement noise

(assumed as an additive Gaussian white noise) has ele-

ments on the main diagonal equal to rV for the line in

the output vector corresponding to V and rnt for the line

corresponding to nt; the covariance matrix Rυυ,T has

elements on the main diagonal equal to rT for the line

in the output vector corresponding to Tsurf .

Due to space limitations, only the sensitivities to a few tuning

parameters are shown here. The sensitivities are presented

separately for the electrochemical UKF and the thermal UKF,

both with an additive noise acting on the measured variables,

in order to understand the estimator robustness with respect to

measurement noises and its actual filtering capability.

A. Tuning of the electrochemical UKF

Given the aforementioned design choices, the study of

the terms in electrochemical covariance matrices follows this

procedure:

• fix pcs = 10−7, pce = 10−10 and pT = 10−1;

• fix qce = 10−12 and qT = 10−6, and study sensitivity to

qcs;

• fix rV = 10−2, rnt = 10−9 (note that, as observed in

Subsection III-A, rnt << rV ) and rT = 10−1.

An additive noise is applied to the simulated voltage signal,

according to the assumptions made above, before feeding it to

UKF for the measurement-update step. The sensitivity analysis

of parameter qcs is performed in Figure 13. εSoC is the bulk-

SoC estimation error, and is defined as the difference between

the simulated and the estimated state of charge. It is used here

as a synthetic figure of the electrochemical UKF accuracy,

while details on local states convergence are presented in

Section V. In this figure, the effect of qcs on estimator

convergence time is clear: the higher is qcs, the lower is the

time needed by UKF to converge to the true value of SoC. This

time may be evaluated, for example, looking at the crossing

of the level εSoC = 5%: this goes from 180s for qcs = 10−8
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Fig. 13. Sensitivity study on parameter qcs, under current input profile shown
in Figure 11 and additive voltage measurement noise: differently tuned UKF
estimators are entering the region at εSoC = 5% at different time instants and
show different noise rejection capability.

to 550s for qcs = 10−12. However, the higher is qcs, the lower

is also the filtering effect of UKF on measurement noise.

In conclusion, a trade-off between convergence time and

estimator rejection/filtering effect in presence of measurement

noise has to be established. After extensive simulation studies,

the selected values for the simulations shown in the following

are qcs = 10−13 and rV = 10−5, that will be exhaustively

validated in Section V.

B. Tuning of the thermal UKF

The tuning study for the thermal covariance matrices has

an analogous procedure:

• fix pcs = 10−7, pce = 10−10 and pT = 10−1;

• fix qcs = 10−11 and qce = 10−12, and study sensitivity

to qT ;

• fix rV = 10−3, rnt = 10−9 and rT = 10+1.

According to the assumptions above, an additive noise is

applied to the simulated surface temperature signal, before

feeding it to UKF for the measurement-update step. The

sensitivity analysis of parameter qT is performed in Figure 14.

εTb is the bulk temperature estimation error, and is defined as
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Fig. 14. Sensitivity study on parameter qT , under current input profile shown
in Figure 11 and additive surface temperature measurement noise: differently
tuned UKF estimators are entering the region at εTb = −1◦C at different
time instants and show different noise rejection capability.
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the difference between the simulated and the estimated bulk

temperature. It is used here as a synthetic figure of the thermal

UKF accuracy, while details on local states convergence are

presented in Section V. The effect of qT on estimator con-

vergence time is evident from the figure: the higher is qT ,

the lower is the time needed by UKF to converge to the true

value of Tbulk. For example, looking at the crossing of the

level εTb = −1◦C, the convergence time goes from 200s for

qT = 10+0 to 500s for qT = 10−6. However, the higher is

qT , the lower is also the noise filtering effect of UKF. In all

considered cases, the estimator is able to fully recover from

wrong initialization. In conclusion, a similar trade-off as for

the electrochemical UKF needs to be settled. After extensive

simulation studies, the selected values used in the following

are qT = 10−6 and rT = 10−1, which will be thoroughly

validated in the next section.

V. VALIDATION

This section validates first the soft-constrained DUKF in two

different scenarios. Then, the advantages of the dual observer

structure are detailed and analyzed in Subsection V-A. All the

simulation results presented hereafter are obtained by relying

on a coupled electrochemical-thermal model, solved via an

ODE solver in MATLAB environment, as explained in [25].

The tests designed for validation purposes are both with

noisy voltage and surface temperature measurements. They are

defined as follows:

1) The current pulses profile at 10C introduced in Subsec-

tion III-B and depicted in Figure 11.

2) A more dynamic test, consisting of a repeating sequence

of current pulses, both positive and negative, with in-

creasing amplitude (as high as 50C or 300A), as shown

in Figure 15; the simulator starts at SoC = 100% and

T = 10◦C (to simulate a cooling system), and the pulses

are designed so that the cell is overall discharging during

the test. As before, the simulation is stopped when V

reaches 2.7V.
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Fig. 15. Current input profile used to validate the DUKF: sequence of pulses
at increasing amplitude (5C-10C-20C-50C in discharge).

The estimator convergence results for the bulk SoC in the

first test are presented in Figure 16; both SoC and εSoC are

expressed in percentage. The DUKF is initialized at different

initial guesses of SoC and Tbulk, indicated as SoC0,UKF and

T0,UKF, respectively. Also, convergence results for bulk tem-

perature are shown in Figure 17. Temperatures are expressed

in degrees Celsius. It is confirmed that, even in the presence

of noisy measured signals:
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Fig. 16. Bulk SoC estimation results for the first scenario, with several
values of SoC0,UKF and T0,UKF: for all values of initialization, the estimator
converges on the true SoC value.
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Fig. 17. Bulk temperature estimation results for the first scenario, with several
values of SoC0,UKF and T0,UKF: for all values of initialization, the estimator
converges on the true Tbulk value.

• The estimator is robust enough to recover and finally

converge to the true value of SoC and Tbulk even for a

large initialization error in both the electrochemical and

thermal parts, respectively of up to 50% and up to 30◦C.

• The initial convergence rate is very fast, for all considered

initializations: the SoC error goes below 10% in less than

40s, while the bulk temperature error goes below 5◦C (in

absolute value) in less than 60s.

• After the initial transient (roughly 250s), the SoC error

keeps always under 3% (in absolute value), and reaches

values as low as 1.5% by the end of the test in all

cases apart (SoC0,UKF = 50%, T0,UKF = 40◦C); the bulk

temperature error is always below 0.1◦C (in absolute

value) after the initial transient.

Furthermore, Figure 18 and Figure 19 plot the estimation of

lithium concentration distributions in solid phase at different

time instants. The former figure plots the estimation of surface

stoichiometry for all spherical particles along x, while the

latter figure plots the estimation of stoichiometry along the
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Fig. 18. Surface stoichiometry distribution along x direction, at different
time instants (depicted with different colors) for the first scenario. Vertical
dotted lines indicate the separation among domains: negative electrode (left),
separator (center) and positive electrode (right).
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Fig. 19. Stoichiometry distribution along r direction of the spherical particle
at x = L, at different time instants (depicted with different colors) for the
first scenario.

radial direction of a spherical particle close to the positive

current collector. In both cases, the DUKF converges to the

true continuous value of concentrations and accurately esti-

mates the gradients. Note that, in Figure 18, the convergence

of positive electrode states is faster than negative electrode

ones, due to model parameterization and filter tuning. From

Figure 19, it is clear how surface stoichiometry has a faster

convergence over the core one, because the former is the one

more directly affecting the measured voltage. Also, close to the

end of simulation, as can be seen, for example, at t = 660s,

values of surface stoichiometry are reached that are close to

active material saturation/depletion; in these conditions, the

thermodynamic equilibrium potential U exhibits a strong non-

linear dependency on θse. The DUKF observer is effectively

capable of capturing this non-linearity. Finally, Figure 20

shows the temperature distribution in the cylindrical cell at

several time instants. From the figure, it can be seen that the

surface temperature is converging close to the true value in
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Fig. 20. Temperature distribution along rc direction of the cylindrical cell,
at different time instants (depicted with different colors) for the first scenario.

the first seconds of the test, because it is a measured quantity;

on the contrary, the convergence of the core temperature

requires more time. At the end of the test a gradient of about

7.5◦C is generated between the surface and the core, with the

latter being warmer. This gradient is correctly captured by the

DUKF.

The proposed dual observer is able to estimate both the

bulk SoC and the concentration gradients, as well as the

temperature distribution, also in the second scenario, that en-

compasses a more demanding input. The same representation

used above is followed by Figures 21-25. As before, the
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Fig. 21. Bulk SoC estimation results for the second scenario, with several
values of SoC0,UKF and T0,UKF: for all values of initialization, the estimator
converges on the true SoC value.

DUKF estimator is very robust to noisy measurements and

large initial estimation error (of up to 50% and 30◦C). εSoC

converges in all cases to values below 3.5% (in absolute value)

in less than 200s, and below roughly 1.5% by the end of the

test. The same convergence rate is observed in the estimation

of solid particles surface and inner lithium concentrations. εTb

converges in all cases to values below 0.5◦C (in absolute

value) in less than 120s, and similar results are obtained
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Fig. 22. Bulk temperature estimation results for the second scenario, with
several values of SoC0,UKF and T0,UKF: for all values of initialization, the
estimator converges on the true Tbulk value.
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Fig. 23. Surface stoichiometry distribution along x direction, at different
time instants (depicted with different colors) for the second scenario. Vertical
dotted lines indicate the separation among domains: negative electrode (left),
separator (center) and positive electrode (right).

for the whole temperature profile along the radius. It is

important to note that, in these conditions with higher currents,

greater internal gradients are triggered, both for concentrations

and temperatures; as such, estimating these gradients is even

more important here. For example, the temperature difference

between the surface and the core of the cell assumes the

substantial value of 35◦C towards the end of the test. Also

in this case, DUKF estimator is capable to overcome the high

non-linearity due to extreme values of surface concentrations

reached in the final part of the test (see for example Figure

24 for t = 1030s).

A. Remark on observer dual structure

This subsection further illustrate the advantages of the dual

structure. The analysis shows that joint temperature and chem-

ical dynamics estimation is required for accurate results; at the

same time, the analysis exemplifies how the DUFK structure
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Fig. 24. Stoichiometry distribution along r direction of the spherical particle
at x = L, at different time instants (depicted with different colors) for the
second scenario.
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Fig. 25. Temperature distribution along rc direction of the cylindrical cell, at
different time instants (depicted with different colors) for the second scenario.

achieves this result with a limited increase in complexity with

respect to chemical dynamic only estimators.

Consider the electrochemical UKF subject to the input

current of Figure 15, and initialized with 20% initial SoC

error. The simulated temperature profiles from the coupled

electrochemical-thermal model, with Nc = 6, are shown

in Figure 26, for the surface and core subcells. Note that

the simulator is initialized at T = 10◦C. In this study, the
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Fig. 26. Simulated temperature profiles at surface and core of the cell, under
the same current of Figure 15.
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electrochemical UKF is run with three different temperature

inputs: (i) a constant temperature equal to Tref , which is

equivalent to fix P2D model parameters to their nominal value,

as if there were no temperature measurement available (see

(5)); (ii) a wrong constant temperature measurement, namely

T = 10◦C, that is the initial cell temperature in the simulated

test, as if there were no thermal dynamics leading to an overall

increase of temperatures; (iii) a bulk temperature measure-

ment, computed from simulated temperature states via (12).

The observer states estimation results can be compared to the

simulated concentrations from the coupled electrochemical-

thermal model by looking at Figure 27. Recalling the final
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Fig. 27. Solid phase stoichiometry at surface (top) and core (bottom) of the
particle located close to positive electrode current collector, under the current
profile of Figure 15. Simulated results from the coupled electrochemical-
thermal model are compared to estimations from the electrochemical UKF.
Three different temperature measurements are considered for the observer.

objective of the present work, that is the estimation of local

values of lithium concentrations and of temperatures, from the

figures above two conclusions can be drawn, which confirm

the literature results reported in Section I:

1) Lithium concentrations estimation is strongly affected

by thermal dynamics. In fact, while surface stoichiom-

etry is estimated at an acceptable accuracy level in all

considered cases (recall that the surface stoichiometry

is the one more directly affecting the measured variable

V ), the core stoichiometry is not correctly estimated

by the electrochemical UKF that does not receive at

least a bulk temperature measurement. Without such a

measurement, the estimated core stoichiometry exhibits

an error as large as 15% of the simulated value.

2) The estimation of local temperatures, and in particular

of core temperature, is not a minor task, but is crit-

ical for the cell safety and performances. At the end

of the considered test, while the surface temperature

(measurable quantity) is still at about 50◦C, which may

be below the recommended maximum temperature for

a standard production cell, the core temperature reaches

a temperature of 95◦C, which is surely detrimental and

possibly dangerous for most Li-ion cells. As such, an

estimate of temperatures distribution inside the cell is

necessary, and a simple bulk temperature estimation

may not be enough to detect a thermal runaway under

demanding input currents.

VI. CONCLUSIONS

In the present work, a DUKF observer is applied to an

electrochemical-thermal model of a Li-ion cell, composed of

the complete P2D model and a distributed thermal model.

The P2D model represents a good trade-off between elec-

trochemical modeling complexity and accuracy. The goal is

that of estimating both the bulk SoC and the lithium con-

centration distribution in the solid phase, as well as both the

bulk temperature and the temperature distribution in the cell.

Observing the internal states of the electrochemical model is

particularly challenging because of convergence issues of the

estimate of lithium concentration in solid phase. In this work,

the issues are solved by introducing a soft-constraint in the

DUKF implementation.

Using Unscented Kalman Filtering in this problem has

several advantages: it overcomes the high non-linearity of the

electrochemical model; it provides tools for a simple integra-

tion of the additional lithium mass conservation constraint;

it is amenable to parallel implementation; and it guarantees

a fast and robust convergence from large initial estimation

errors. In addition, the proposed dual structure augments the

description capability and accuracy of a previously proposed

UKF observer by the same authors of this paper, making use

of a minimal set of information.

An extensive validation campaign eventually confirms the

ability of the novel approach to estimate accurately both bulk

quantities, such as SoC and Tbulk, and local concentration and

temperature values in any point of the cell.
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